Continuous Relaxation of MAP Inference: A Nonconvex Perspective

نویسندگان

  • D. Khuê Lê-Huu
  • Nikos Paragios
چکیده

In this paper, we study a nonconvex continuous relaxation of MAP inference in discrete Markov random fields (MRFs). We show that for arbitrary MRFs, this relaxation is tight, and a discrete stationary point of it can be easily reached by a simple block coordinate descent algorithm. In addition, we study the resolution of this relaxation using popular gradient methods, and further propose a more effective solution using a multilinear decomposition framework based on the alternating direction method of multipliers (ADMM). Experiments on many real-world problems demonstrate that the proposed ADMM significantly outperforms other nonconvex relaxation based methods, and compares favorably with state of the art MRF optimization algorithms in different settings.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploiting Structure for Tractable Nonconvex Optimization

MAP inference in continuous probabilistic models has largely been restricted to convex density functions in order to guarantee tractability of the underlying model, since high-dimensional nonconvex optimization problems contain a combinatorial number of local minima, making them extremely challenging for convex optimization techniques. This choice has resulted in significant computational advan...

متن کامل

Approximate MAP Inference in Continuous MRFs

Computing the MAP assignment in graphical models is generally intractable. As a result, for discrete graphical models, the MAP problem is often approximated using linear programming relaxations. Much research has focused on characterizing when these LP relaxations are tight, and while they are relatively well-understood in the discrete case, only a few results are known for their continuous ana...

متن کامل

Dual Decomposition for Joint Discrete-Continuous Optimization

We analyse convex formulations for combined discrete-continuous MAP inference using the dual decomposition method. As a consquence we can provide a more intuitive derivation for the resulting convex relaxation than presented in the literature. Further, we show how to strengthen the relaxation by reparametrizing the potentials, hence convex relaxations for discrete-continuous inference does not ...

متن کامل

Exactness of Approximate MAP Inference in Continuous MRFs

Computing the MAP assignment in graphical models is generally intractable. As a result, for discrete graphical models, the MAP problem is often approximated using linear programming relaxations. Much research has focused on characterizing when these LP relaxations are tight, and while they are relatively well-understood in the discrete case, only a few results are known for their continuous ana...

متن کامل

A semidefinite relaxation scheme for quadratically constrained

  Semidefinite optimization relaxations are among the widely used approaches to find global optimal or approximate solutions for many nonconvex problems. Here, we consider a specific quadratically constrained quadratic problem with an additional linear constraint. We prove that under certain conditions the semidefinite relaxation approach enables us to find a global optimal solution of the unde...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1802.07796  شماره 

صفحات  -

تاریخ انتشار 2018